An Interactive Wavelet Artificial Neural Network in Time Series Prediction
نویسندگان
چکیده
An interactive mathematical methodology for time series prediction that integrates wavelet de-noising and decomposition with an Artificial Neural Network (ANN) method is put forward here. In this methodology, the underlying time series is initially decomposed into trend and noise components by a wavelet de-noising method. Both trend and noise components are then further decomposed by a wavelet decomposition algorithm generating Wavelet Components (WCs) for each one. Each WC is individually modeled by an ANN method in order to produce both in-sample and out-of-sample (point) forecasts. At each time t, the forecasts of the WCs of the trend and noise components are added to provide in-sample and out-of-sample forecasts of the underlying time series. This methodology, applied to the well-known Canadian lynx time series that, as pointed by [1], exhibit non-linear and non-Gaussian characteristics, is shown to outperform other methods traditionally applied to this data.
منابع مشابه
A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملGroundwater Level Forecasting Using Wavelet and Kriging
In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملپیش بینی پارامترهای کیفی (NO3 ,DO) رودخانه کرج با استفاده از مدل های ANN، MLR و تلفیق شبکه عصبی-موجکی بر پایه نویززدایی
Background & Objectives: The prediction and quality control of the Karaj River water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, performance of artificial neural network (ANN), combined wavelet-neural network (WANN), and multi linear regression (MLR) models were evaluated to predict next month nitrate and dissolved oxygen of “Pole K...
متن کامل